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Abstract. Different sets of metastable states can be reached in glassy systems below some transition
temperature depending on initial conditions and details of the dynamics. This is investigated for the
Sherrington-Kirkpatrick spin glass model with long ranged interactions. In particular, the time dependent
local field distribution and energy are calculated for zero temperature. This is done for a system quenched to
zero temperature, slow cooling or simulated annealing, a greedy algorithm and repeated tapping. Results
are obtained from Monte-Carlo simulations and a Master-Fokker-Planck approach. A comparison with
replica symmetry broken theory, evaluated in high orders, shows that the energies obtained via dynamics
are higher than the ground state energy of replica theory. Tapping and simulated annealing yield on the
other hand results which are very close to the ground state energy. The local field distribution tends to zero
for small fields. This is in contrast to the Edwards flat measure hypothesis. The distribution of energies
obtained for different tapping strengths does again not follow the canonical form proposed by Edwards.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 45.70.Cc Static sandpiles; granular
compaction – 75.10.Nr Spin-glass and other random models – 89.75.-k Complex systems – 02.60.Pn
Numerical optimization

1 Introduction and summary

Complex disordered systems are ubiquitous, in physics
and in many other disciplines. Glasses, spin glasses, gran-
ular media, structure of proteins, neural networks and
various combinatorial optimization problems have a com-
plex organization of low energy states in common. Several
methods have been developed over the time in order to
deal with the built in disorder. Most widely used is the
replica method aiming at the evaluation of the free energy,
entropy or at zero temperature the complexity [1]. Typi-
cally solutions with spontaneously broken replica symme-
try show up below some critical value of temperature or
external noise.

Alternatively some kind of stochastic dynamics has
been employed as a tool to investigate such systems [2–5].
For systems with continuous degrees of freedom Langevin
dynamics may be used. For systems with discrete degrees
of freedom a master equation is appropriate. In particu-
lar Glauber dynamics is used for Ising-spins. Dynamical
processes of this kind can also be used as algorithm for op-
timization problems, for example simulated annealing [6].

The general picture of complex disordered systems is
associated with a rough landscape of energy or free energy
with barriers, some of which diverge with the number N
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of particles or elements sent to ∞. Within the approach
via dynamics the limit N → ∞ is typically performed
first. Only thereafter long time scales are eventually in-
vestigated. This means that the barriers diverging with N
can not be overcome and the system might be stuck in
a certain region of phase space. This means that replica
theory, not relying on any kind of dynamics, and the ap-
proach via dynamics might lead to different results.

This has consequences for instance in using some kind
of dynamical process for finding solutions of combinato-
rial optimization problems. Replica theory might tell that
perfect solutions exist. Dynamics, typically a polynomial
algorithm, can indicate that these solutions are not found
in polynomial time. But it provides information about
suboptimal solutions which can be found in polynomial
time. An example, learning in a perceptron with binary
couplings, has been discussed [3].

The dynamical behavior of complex disordered sys-
tems on long time scales is crucially affected by the ex-
istence of metastable states [3–5,7–12]. Systems under-
going a discontinuous ergodicity breaking transition, e.g.
the spherical p-spin-interaction spin glass, show a freez-
ing temperature which is higher than the temperature
where single step replica symmetry breaking sets in. This
is due to the existence of a large number of metastable
states. In systems with continuous ergodicity breaking
transition and full replica symmetry breaking, e.g. in the
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Sherrington-Kirkpatrick model [13], both temperatures
are identical. Nevertheless the states reached at low tem-
peratures for long, but finite, time may be different to
those captured by replica theory.

Dynamics in this context has been developed along
essentially two different lines. Most investigations are
based on two time correlation and response functions of
the respective basic degrees of freedom [2–5]. Alterna-
tively for spin systems and Glauber dynamics the time
dependent local field distribution has been investigated
within a combination of a Master- and a Fokker-Planck-
equation [14–16]. The two methods are in some sense com-
plementary.

There has been recent interest on metastable states in
the context of granular media. Edwards et al. [17,18] have
postulated that the steady state reached in granular media
after repeated tapping is described by a flat or biased aver-
age over all metastable states. The bias is in the form of a
Boltzmann factor with some effective temperature charac-
terizing the process of tapping. The number of metastable
states has been computed earlier by Edwards and others in
an annealed approximation [19,20]. This hypothesis was
tested with diverse results for various systems and tap-
ping procedures [21,22]. In particular Eastham et al. [16]
have attributed a failure of the Edwards hypothesis to the
special distribution of metastable states selected by dy-
namics.

Metastable states are commonly defined as local min-
ima of a free energy functional obtained for instance by
the TAP approach [11,12]. Investigations of the neighbor-
hood of those minima or other stationary points yield in-
teresting results about the structure of low lying states
in different models of disordered systems. Staying com-
pletely within the framework of non equilibrium dynamics
the concept of a free energy does not apply and one has
to rely on different criteria, for instance on the stability
of states which are stable with respect to a certain move
class. Obviously this is restricted to zero temperature and
a state which is stable with respect to one move class
might be unstable with respect to a wider move class.

The present contribution resumes the question what
kind of metastable states may be reached by various pro-
cedures. The analysis is based on the temporal behavior of
the local field distribution. In particular the Sherrington-
Kirkpatrick model [13] with single spin flip Glauber dy-
namics is investigated. This is actually a prototype sys-
tem for a continuous ergodicity breaking transitions or
for full replica symmetry breaking. A metastable state in
the present context is a state where each spin points in the
direction of its local field. This is the field created by the
external field and the interaction with other spins. Such a
state is stable with respect to single spin flip dynamics.

Section 2 contains the definition of the SK-model,
the local field distribution and Glauber dynamics, which
is also the basis of the Monte-Carlo simulations pre-
sented later. The local field distribution obtained from
the Edwards measure [16,19,20] is discussed in Section 3
and Appendix A. The local field distribution has also been
computed in high orders of replica symmetry breaking by

Oppermann et al. [24]. This is discussed for comparison in
Section 4. The Master-Fokker-Planck approach is the con-
tent of Section 5 and Appendix B. Results are presented
and discussed for various assumptions about the drift ve-
locity in Sections 5.2 and 5.4. Results from the closure
proposed in [14] are given in Section 5.5 and compared
with Monte-Carlo simulations in Section 6.

The following results are obtained:
The local field distribution at zero temperature and late
time behaves as P (k) ∼ k for k → 0+. This holds for the
following schedules investigated: Quench from a fully mag-
netized or random initial state, greedy algorithm, random
or thermal tapping and simulated annealing. This behav-
ior is also found within multiple step replica symmetry
breaking theory. It contradicts the Edwards flat measure
hypothesis.

The distribution of energies found with tapping follows
a displaced Gaussian, where offset and width depend on
the tapping strength. According to the Edwards hypoth-
esis the width should be constant and only the offset is
supposed to depend on the tapping strength. This is in
contrast to the present findings.

Within the framework of a Master-Fokker-Planck ap-
proach the drift velocity diverges as v(k) ∼ k−1 for
k → 0+ and late time. An approximative closure of the
resulting hierarchy yields results similar to those obtained
from Monte-Carlo simulations at zero temperature.

The ground state energy obtained from replica theory
is E/N ≈ −0.763. Quenching and greedy algorithm yield
energies E/N ≈ −0.729 whereas with repeated tapping
or simulated annealing E/N ≈ −0.760 is found, which is
rather close to the ground state energy. The local field dis-
tribution is also quite close to the one obtained in replica
theory. This indicates that a polynomial algorithm might
be able to find good, but suboptimal, solutions to a prob-
lem where finding the best solution is a NP-problem. The
actual performance certainly depends on on the kind of
problem and there might be more efficient polynomial al-
gorithms.

2 SK-model and Glauber-dynamics

The energy of the SK-model is given by

H = −1
2

∑

ij

Jijσiσj −
∑

i

hiσi. (1)

where σi =±1 are Ising spins. The couplings Jij are ran-
dom variables with

Jij = Jji Jij = 0 J 2
ij = N−1. (2)

In addition to the external field hi a spin σi on site i feels
a contribution due to the interaction with other spins.
Instead of dealing with the resulting local fields, it is con-
venient to introduce the product of local field and spin

ki =

⎛

⎝hi +
∑

j( �=i)

Jijσj

⎞

⎠σi. (3)
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The central quantity of the present investigation is the dis-
tribution of those fields, sorted according to the direction
of the spin σi =σ=±1

Pσ(k) =
1
N

∑

j

〈
δσ,σj δ(k − kj)

〉J

. (4)

The bar indicates average over the couplings Jij and
the brackets denote average over spin configurations. The
bonds are assumed to be frozen, but the spin configura-
tions can change in time, resulting in a time dependent
distribution Pσ(k; t). In general Pσ(k) depends on σ due
to the action of external fields or non symmetric initial
conditions.

Unless mentioned otherwise stochastic single spin flip
Glauber dynamics is investigated. At a temperature T =
1/β the flip rate for a spin at site i is

r(ki) =
1
2

(
1 − tanh(βki)

)
. (5)

This is essentially the dynamics used in Monte-Carlo sim-
ulations and the time unit corresponds to MC-step per
site.

In particular at temperature T = 0 the flip rate van-
ishes for k > 0 and eventually a stationary state with
ki ≥ 0 for all i is reached. Depending on initial condi-
tions and cooling schedule various metastable states are
reached. The distribution of those states depends on initial
conditions and cooling schedule.

3 Edwards measure

Tanaka and Edwards [19,20] estimated the number of sin-
gle spin flip metastable states, i.e. states with ki ≥ 0, in
annealed approximation. They find for the SK-model a
displaced Gaussian distribution of energies of metastable
states

PMS(ε) =

√
N

2π

1
δ

e−
N

2δ2 (ε−ε̄)2 (6)

where ε = E/N is the energy per site. They estimated
ε̄ ≈ 0.5 and δ=0.31.

It has been argued [17,18] that a flat or biased aver-
age over all metastable states applies to tapped granular
systems or spin glasses. More precisely, the distribution of
energies of metastable states obtained with some kind of
tapping procedure is supposed to behave as

PE(ε) ∼ PMS(ε) e−βtapNε (7)

where the effective temperature βtap depends on the
strength of tapping. Adopting (6), PE(ε) is again a shifted
Gaussian with ε̄ → ε̄ − δ2 βtap.

The local field distribution in this approximation, in
absence of an external field, is a shifted Gaussian trun-
cated at negative values of k, see [16] and Appendix A,
equation (50):

P (k) =
∑

σ

Pσ(k) =

√
2
π

e−
1
2 (k−κ)2

1 + erf
(

1√
2
κ
) Θ(k) (8)

Fig. 1. Energy ε per site (51), local field distribution P (0+)
and position κ of the maximum of P (k) as function of the
effective inverse temperature βtap calculated from the Edwards
measure.

Fig. 2. Local field distributions: (a) Edwards measure, equa-
tion (8); (b) multi step RSB [24]; (c) Master-Fokker-Planck
equation; (d) simplified Master-Fokker-Planck equation; (e)
Monte Carlo simulation at zero temperature; (f) Monte Carlo
simulation with random tapping.

with

κ =
1
2
{P (0+) + βtap}. (9)

This distribution has a discontinuity of size P (0+) at k=0.
The energy per site is ε=− 1

2 [P (0+) + κ].
Equations (8) and (9) can be solved numerically for

k=0+ as function of the bias βtap. The resulting energy
ε, discontinuity of the local field distribution P (0+) and
peak position κ are shown in Figure 1. In Figure 2 the local
field distribution (8) for β = 2.5 is plotted together with
other results discussed later. For the above bias ε=−0.76,
κ=1.35 and P (0+)=0.175. The bias is choosen such that
the energy ε is close to the ground state energy obtained
in replica theory [24].
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4 Multi step replica symmetry breaking

A linear behavior with slope 0.3 of the local field dis-
tribution for small fields at zero temperature has been
found by Sommers and Dupond [23]. Recently Oppermann
and coworkers [24] have investigated the replica symme-
try breaking solution for T = 0 in high order. They find
ε = −0.763 . . . and again a linear behavior of the local
field distribution with slope 0.3. The same values have
been obtained by Pankov [25]. The present investigation
deals with the distribution of the product of local field and
spin ki, equation (3), resulting in P (k)→0.6 k for k→0+

adopting the above value. The complete form of the local
field distribution is also shown in Figure 2.

Even for a bias chosen such that the energy agrees for
both approaches, P (k) is quite different, indicating that
the replica calculation and the Edwards measure refer to
different states. This is actually expected since the replica
calculation is supposed to present an average over true
ground states, whereas the Edwards measure is supposed
to be a biased average over all metastable states.

5 Master-Fokker-Planck equation

An equation of motion for the local field distribution has
been derived in [14]. The following contains a slightly sim-
plified version.

A spin flip σi → −σi at site i results in changes of the
modified local fields

ki → −ki (10)

and for j �= i
kj → kj − 2Jijσiσj . (11)

With a flip rate r(k), equation (5), the resulting time de-
pendence of the local field distribution is

∂tPσ(k, t) = r(−k)P−σ(−k) − r(k)Pσ(k)

+
1
N

∑

i�=j

〈
r(kj)δσ,σi

{
δ(k − ki + 2σiJijσj) − δ(k − ki)

}〉J

(12)

where the first two terms are due to (10) and the last
term is due to (11). Performing the average over the cou-
plings, neglecting contributions of order N−1, introducing
a “diffusion constant” (see later)

D(t) = 2
〈〈
r(t)

〉〉
= 2

∑

σ

∫
dk r(k)Pσ(k, t) (13)

and a two point function

Rσσ′ (k, k′) =

1
N

∑

i�=j

〈
δσ,σiδ(k − ki)σiJijσjδσ′,σj δ(k′ − kj)

〉J

. (14)

Equation (12) is written as

∂tPσ(k, t) = r(−k)P−σ(−k, t) − r(k)Pσ(k, t)

+2∂k

∑

σ′

∫
dk′ Rσσ′ (k, k′; t)r(k′)

+D(t)∂2
kPσ(k, t). (15)

The double bracket
〈〈· · · 〉〉 indicates average over Pσ(k, t).

Introducing a drift velocity vσ(k)

vσ(k)Pσ(k) = −2
∑

σ′

∫
dk′ Rσσ′(k, k′).r(k′) (16)

Equation (15) combines elements of a Master-equation
and a Fokker-Planck equation:

∂tPσ(k, t) = r(−k)P−σ(−k, t) − r(k)Pσ(k, t)

−∂k

(
vσ(k, t) − D(t)∂k

)
Pσ(k, t). (17)

The two point function (14) obeys

kPσ(k) =
∑

σ′

∫
dk′ Rσσ′ (k, k′) (18)

and with (16) the following sum rule is obtained
〈〈
v
〉〉

= −2
〈〈
kr
〉〉

. (19)

Along the same way an equation of motion can be derived
for the two point function (14). The derivation is sketched
in Appendix B. It involves, however, a three point func-
tion, and ultimately a hierarchy of equations is generated
which requires some kind of truncation.

The probability to flip a spin in field k per unit time
is r(k). Let τ(t) be the probability that a given spin has
flipped within time t. Then

∂tτ(t) =
∑

σ

∫
dk r(k)Pσ(k, t) =

1
2
D(t). (20)

This quantity has actually been used in [16] as a measure
of time.

5.1 Initial state

For any factorizing initial state which is not correlated
with the couplings Jij , the average over J in (14) involves
only the J-dependence of the fields ki, equation (3), re-
sulting in

Rσσ′ (k, k′) ≈

−
(
∂k + ∂k′

) 1
N2

∑

i�=j

〈
δσ,σiδ(k − ki)δσ′,σj δ(k′ − kj)

〉J

= −
(
∂k + ∂k′

)
Pσ(k)Pσ′ (k′). (21)

Examples are a fully magnetized initial state with σi = 1
for all i, or a state with random spins. In absence of an
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external field a fully magnetized initial state is actually
equivalent to any other initial spin configuration within
the ensemble of couplings. The magnetization plays then
the role of the overlap with this initial state.

In the following a fully magnetized initial state is as-
sumed. The initial value of the local field distribution is

P+1(k, 0) =
1√
2π

e−
1
2 k2

P−1(k, 0) = 0. (22)

The diffusion constant, equation (13), is D(0)=1 and the
drift velocity obtained from (16) and (21) is

vσ(k, 0) = −2
〈〈
kr(0)

〉〉− k. (23)

5.2 Constant and linear drift velocity

Investigating the validity or failure of the Edwards hy-
pothesis [18,17] Eastham et al. [16] have assumed a
constant drift velocity v(k, t) = c D(t) and have solved
equation (17) numerically for T =0 and time up to t ∼ 10.
At t=10 they find reasonable over all agreement with MC-
simulations. There appears, however, a slightly smeared
out step at k=0.

The asymptotic behavior at late time can easily be
evaluated for v(k)=(c−c′k)D(t). Neglecting for a moment
the non local contributions in (17), a Gaussian centered
at k=κ(t) and with width ∆k(t) results

P (k, t) ∼ e−(k−κ(t))2/2∆2
k(t). (24)

Introducing τ(t)=
∫ t

0 D(t)dt

κ(t) =
c

c′
(
1 − e−c′τ

)
(25)

the width is

∆2
k(t) =

1
c′
(
1 − (1 − c′) e−2c′τ

)
. (26)

For T = 0 and late time the part of the local field distri-
bution extending to k < 0 is expected to be small. This
means that D(t), equation (13), is small. For k < 0 the
dominant contributions to (17) are the second term and
the term involving the second derivative, i.e.

−P (k, t) + D(t)∂2
k P (k, t) ≈ 0 for k < 0 (27)

which is solved by

P (k, t) = a(t) ek/
√

D(t), (28)

and with (13) D(t)=2a2(t). Similar arguments lead to

P (k, t) = a(t)
(
2 − e−k/

√
D(t)

)
(29)

for small k > 0. The factor a(t) is obtained by matching
with the solution (24) at k ≈ 0, i.e.

a(t) ≈ 1
2
√

2π∆(t)
e−κ2(t)/2∆2(t). (30)

Especially for t → ∞ one obtains

κ → c

c′
∆ → 1√

c′
D → c′2

8π
e−c2/c′ . (31)

This solution resembles the in some sense the distribu-
tion obtained from the Edwards measure (8) with β =2c
and c′ = 1. The step at k = 0 is, however, smeared out
and even at late time there is a tail of P (k) extending to
k < 0 indicating that the above assumption regarding the
drift velocity is not appropriate for metastable states with
P (k < 0)=0.

For c′ → 0 and t → ∞ the step at k=0 vanishes, but
κ and with it the energy per site grow without limit. The
qualitative agreement with the MC-data in [16] appears to
be a consequence of the particular choice of c and an ap-
propriate finite t in this investigation. It has been argued
that the results at finite time are actually more appropri-
ate for the asymptotic behavior of a system of finite size.
I shall come back to this point later.

5.3 Qualitative discussion of the drift term at T = 0

At zero temperature and for late time metastable states
are reached. this means that all local fields are expected
to be non negative, i.e. P (k < 0, t → ∞) → 0. Assume
that for small k and late time

Pσ(k, t) → c kα Θ(k). (32)

This gives rise to a contribution ∼ kα−2 in the diffusion
term of Master-Fokker-Planck equation (17), which has to
be compensated by the drift term. This results in

vσ(k, t) → α D(t) k−1. (33)

The evaluation of the actual value of α requires to solve
the equations for the n-point functions of higher order.

5.4 Closure I: Disregarding dynamical correlations

The two point function (14) involves an average over the
couplings Jij . The couplings are contained in the local
fields ki, (3). In addition correlations between the cou-
plings and the actual states reached at finite t build up in
the course of time. Neglecting those equation (21) holds
for all times. The resulting drift velocity is

vσ(k, t) = D(t)∂k ln
(
Pσ(k)

)
− 2

〈〈
r′(t)

〉〉
(34)

and the equation of motion (17) becomes

∂tPσ(k, t) ≈ r(−k)P−σ(−k, t) − r(k)Pσ(k, t)

+ 2
〈〈
r′(t)

〉〉
∂kPσ(k, t). (35)

The qualitative behavior for T =0 is easily discussed. For
small k the local field distribution is

Pσ(k, t) ≈ Pσ(0, t) + k P ′
σ(0±, t) (36)
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with P+(0, t) �= P−(0, t) and P ′
σ(0+, t) �= P ′

σ(0−, t). For
k → 0 equation (35) yields

∂t

∑

σ

Pσ(0, t) =

− 2
∑

σ

Pσ(0, t)
∑

σ′

(
P ′

σ′ (0+, t) − P ′
σ′ (0−, t)

)
(37)

which is solved by
∑

σ Pσ(0, t) → 0 for t → ∞ with finite
P ′

σ(0+, t) > 0. The drift velocity obeys for k > 0

vσ(k, t)−→
k→0

D(t)
P ′

σ(0+, t)
Pσ(0, t) + k P ′

σ(0+, t)
−→
t→∞

D(t)
k

(38)

and the exponent α introduced in the previous subsection
is α=1.

This is supported by the numerical integration of equa-
tion (35). The complete local field distribution for t→∞
is also shown in Figure 2. The slope of P (k) for k → 0
is now 0.9. This increased value is in accordance with the
maximum of P (k) shifted towards smaller values of k and
a higher value of the energy ε. This behavior is also found
in the investigations reported later.

Already this rather simple closure shows that the as-
sumption of a constant or linear drift velocity, [16] and
Section 5.2, is not appropriate. It also shows that the Ed-
wards measure [19] does not apply to the situation cap-
tured by the Master-Fokker-Planck equation (17). It has
to be stressed again, that this equation describes a rapid
quench from a fully magnetized or high temperature state
to T =0, and that the limit N →∞ is performed first. In
terms of combinatorial optimization problems this corre-
sponds to a greedy search and therefore to a polynomial
algorithm ∼N2. An average over all metastable states, on
the other hand, would require an exponential effort.

5.5 Closure II: Approximative treatment of dynamical
correlations

An improved theory taking into account dynamical corre-
lations has been proposed by the author [14]. It is based
on a factorization of the three point function entering the
equation of motion of the two point function (14). It in-
volves a modified Kirkwood superposition approximation
known from the theory of real gasses [26]. A slightly sim-
plified version is outlined in Appendix B. The Master-
Fokker-Planck equation (17) and the equation for the drift
velocity (55) can be integrated numerically with the initial
conditions discussed in Section 5.1. For technical reasons
the calculations are performed for a small finite temper-
ature, typically T = 0.01, much smaller than the freezing
temperature Tc =1.

Figure 3 shows the resulting local field distributions
for spin up and down, respectively, for times 0, 1, 5 and
30. The result from the Monte-Carlo simulation discussed
in the next section for t=30 are also shown. The complete
local field distribution P (k)=P+(k) + P−(k) is compared
with other results in Figure 2. This shows that for long

Fig. 3. Local field distribution Pσ(k, t) for t = 0, 1, 5 and 30
obtained from the Master-Fokker-Planck approach and from
Monte-Carlo simulations for t=30.

Fig. 4. Drift velocity vσ(k, t) for t = 0, 1, 5 and 30 obtained
from the Master-Fokker-Planck approach and from Monte-
Carlo simulations for t=30.

time P (k, t) → 0 for k → 0 in qualitative agreement with
replica theory and in contrast to the finite step obtained
from Edwards hypothesis. The value of the exponent α
introduced in Section 5.3 is consistent with α=1.

The agreement between Monte-Carlo simulation and
the Master-Fokker-Planck approach with the present clo-
sure is quite satisfactory. This indicates that the present
closure captures the essential mechanisms: the effect of
flipping a spin in its own local field, described by the first
two terms in (17), and the small effects on the local fields
of all the other spins, described by the drift- and diffusion
terms of the Master-Fokker-Planck equation (17).

The drift velocity for spin up and down for the same
times as above is plotted in Figure 4 together with the
results of the simulation at the latest time. The formation
of the 1/k-divergence of vσ(k, t) for long time and k → 0
is seen in the Master-Fokker-Planck approach as well as
in the Monte-Carlo data.

Energy per site ε(t), magnetization m(t), diffusion con-
stant D(t) and spin flips per site τ(t), see equation (20),



H. Horner: Time dependent local field distribution and metastable states in the SK-spin-glass 419

Fig. 5. Energy per site ε(t), magnetization m(t), diffusion con-
stant D(t), flips per site τ (t) and fraction τ0(t) of spins fliped at
least once obtained from the Master-Fokker-Planck approach
and from zero temperature Monte-Carlo simulations. The time
unit corresponds to Monte-Carlo steps per site.

are plotted as functions of time in Figure 5. Again Master-
Fokker-Planck and Monte-Carlo results are compared.
Asymptotic values for t → ∞ are listed in Table 2. They
are discussed later.

6 Monte-Carlo simulations

In order to test the results of the previous section and in
order to investigate alternative optimization methods var-
ious Monte-Carlo simulations have been performed. The
general procedure is standard. A site i is selected at ran-
dom and flipped with a probability r(ki), equation (5).
The local fields are updated according to (11)

ki → −ki kj → kj − 2Jijσiσj . (39)

The local field distribution, equation (4), two point func-
tion, equation (14) and drift velocity, equation (16), are
also updated accordingly.

Alternatively a greedy algorithm is investigated, where
in each step the spin σi withe most negative value of ki is
selected and flipped, until ki ≥ 0 for all i.

For the SK-model in the limit N → ∞ only the first
and second moment of the distributions of couplings (2)
is relevant. The simulations are therefore performed with
Jij = ±1/

√
N for i �= j and Jii = 0. This speeds up the

computation considerably and the local fields are integer
multiples of 1/

√
N .

Table 1. Coefficient of fitting energy per site −ε(N) and mag-
netization m(N) according to (40) with α = 0.2.

F0 F ′

εMC –0.729 0.157
εgreedy –0.730 0.182
mMC 0.074 0.29
mgreedy 0.091 0.53

Table 2. Energy per site ε and magnetization m obtained from
the various methods discussed in the text. For the simulations
extrapolated values for N → ∞ are shown.

Method −ε m

Multi step RSB 0.763
Eswards measure β=2.5 0.760
Master-Fokker-Planck equation 0.688 0.086
Monte Carlo T =0 0.729 0.074
Greedy 0.730 0.091
Random tapping, p=10% 0.760
Thermal tapping, Ttap =0.7 0.759
Simulated annealing 0.759

The simulations are performed on samples with up to
N = 22500 sites. The results are typically averaged over
1000 runs with 200 different sets of random couplings Jij .

6.1 Zero temperature simulation and greedy algorithm

Results of the zero temperature Monte-Carlo simulations
and from the greedy algorithm are shown in Figures 2–5
and in Table 2.

Figure 5 compares the time dependence of various
quantities obtained from zero temperature Monte Carlo
simulations on samples of different size N and from the
Master-Fokker-Planck approach. Regarding the energy,
magnetization and diffusion constant there are some dis-
crepancies at intermediate times, the behavior at early
and late time is, however, reasonably well reproduced.

Energy and magnetization can be fitted according to

F (N) ≈ F0 + F ′ N−α. (40)

In [27] α = 0.33 was proposed. An improved fit to the
present data is obtained with α = 0.2. This yields the
values shown in Table 1. The asymptotic values of the
energy are slightly lower than those obtained in [27]. This
is due to the different choice of α and the fact that larger
values of N are used in the present investigation.

Starting with a fully magnetized initial state the mag-
netization at T = 0 remains finite. This is also true for
the greedy algorithm. The values obtained by the simula-
tions are in reasonable agreement with the result from the
Master-Fokker-Planck approach.

The local field distribution P (k) obtained from the
greedy algorithm and from zero temperature Monte-Carlo
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simulations are almost identical. For finite N there is a
small step at k = 0 vanishing as

P (k = 0+, N) ≈ 1.4 N−0.46 (41)

which is in reasonable agreement with the result obtained
in [27].

In the limit N → ∞ P±(k) ∼ k for k → 0 is found
in all three cases. This is in contrast to the step resulting
from the Edwards hypothesis.

The distribution of the energy per site PE(ε), see (6),
is fitted well by a shifted Gaussian, with ε̄ ≈ −0.70 and
δ ≈ 0.62 for N = 10 000. Similar values are found for other
values of N .

A significant discrepancy between the results of the
Master-Fokker-Planck approach and Monte Carlo simula-
tions shows up for the number of spin flips measured as
τ(t). A given spin might actually flip more than once. Let
τ0(t) be the fraction of spins which has flipped at least
once. Then the fraction of spins which have not flipped at
all is 1−τ0(t). This quantity is also shown in Figure 5. The
difference between τ(t) and τ0(t) is a measure of multiple
spin flips. The results obtained for samples of different
size follow universal curves up to some N -dependent time
t̄(N). A fit covering the range t > 10 yields

t̄(N) ≈ 0.22 N0.7 (42)

and for τ(t, N) and τ0(t, N), respectively, the asymptotic
values

τ(∞, N) ≈ 0.26 + 0.077 ln(N)
τ(t,∞) ≈ 0.43 + 0.11 ln(t)

τ0(∞, N) ≈ 0.66 − 0.19 N−0.25

τ0(t,∞) ≈ 0.66 − 0.32 t−0.36 (43)

are obtained. This means that τ(t, n) diverges logarith-
mically for t → ∞ and N → ∞ whereas τ0(t, N) re-
mains finite in this limit. A divergence of τ(t, N) was
also found by Eastham et al. [16] on the basis of a con-
stant drift velocity. A fit corresponding to equation (43)
would, however, yield rather different values. The Master-
Fokker-Planck approach yields a finite asymptotic value
for τ(t→∞) which is not too far from the asymptotic
value of τ0(∞,∞).

6.2 Tapping dynamics

An investigation of tapping dynamics is of interest not
only in the context of the Edwards hypothesis [17]. Tap-
ping or thermal cycling might also be used for combina-
torial optimization problems [28]. Tapping might be done
either by heating the system periodically to some tem-
perature Ttap or by flipping randomly selected spins with
probability p.

The minimal energy obtained within ntap cycles of ran-
dom tapping is fitted to

εtap(ntap, p, N) = ε0,tap(p, N) − ε′tap(p, N)n−α′
tap (44)

Fig. 6. Integrated distribution of energies Φ(ε) for different
tapping strengths p using random tapping wit N = 2500 and
n = 1000.

with α′ = 0.5. There is no significant N -dependence
in ε0,tap(p, N) and the optimal value ε0,tap(p = 0.1) ≈
−0.759 is obtained for p = 0.1.

Thermal tapping yields similar results with an opti-
mal tapping temperature Ttap ≈ 0.7. Tapping is obviously
quite effective in finding states with low energy.

For comparison simulated annealing has also been
tested. A schedule T (t) = (1 − t/t̄)T0 with T0 = 1.5 and
t̄ = 300 . . .10 000 has been used. For the slowest cooling
schedule ε ≈ −0.758 has been found.

The local field distribution obtained with the tapping
procedure is shown in Figure 2. The agreement with the
local field distribution obtained by multi step RSB is quite
good. Again there is a small step of P (k, N) at k = 0,
which vanishes for N → ∞ similar to equation (41) with
a reduced prefactor ∼0.5. Even at finite N P (0+) is much
smaller than P (0+) ≈ 0.18 resulting from the Edwards flat
measure hypothesis.

As a second test of the validity of the Edwards flat
measure hypothesis the distribution of energies of meta-
stable states PMS(ε) for different tapping strengths are
compared [22].

Counting how often an energy El =Nεl < Nε is found
within L Monte Carlo runs, the integrated distribution of
energies of metastable states

Φ(ε) =
1
L

∑

l

Θ(ε − εl) =
∫ ∞

ε

dε′ PMS(ε′) (45)

results. This quantity is shown in Figure 6 obtained
from random tapping with strength p on systems of size
N =2500.

Adopting a Gaussian distribution of energies of meta-
stable states, equation (6),the integrated distribution is

Φ(ε) =
1
2
erfc

(√
N

2
ε − ε̄

δ

)
. (46)

Combinig this with equation (7), which is a consequence of
the Edwards hypothesis, the only effect of tapping should
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Table 3. ε̄ and δ obtained from a fit of Φ(/ε) to equation (46)
for random and thermal tapping, respectively.

p % −ε̄ δ

5.0 0.7509 0.263
7.5 0.7537 0.207
10.0 0.7548 0.163
12.5 0.7544 0.157
15.0 0.7526 0.172
17.5 0.7504 0.188
20.0 0.7468 0.189

Ttap −ε̄ δ

0.4 0.7458 0.227
0.5 0.7495 0.174
0.6 0.7517 0.151
0.7 0.7532 0.138
0.8 0.7536 0.127
0.9 0.7532 0.128
1.0 0.7512 0.134

be a shift of the peak energy ε̄, whereas δ should be con-
stant. The data in Table 3 show that this is not the case.

The effective temperature 1/βtap in equation (7) is sup-
posed to depend on the tapping strength p. More precisely

ε̄ − δ2βtap = const. (47)

is expected. The existence of a finite optimal tapping
strength implies that this dependence can not be mono-
tonous. For thermal tapping similar distributions are
found. Again δ is not constant and equation (47) is not
fulfilled assuming βtap = 1/Ttap.

I like to thank Mike Moore for discussions and Paul Eastham
for helpful correspondence, especially on the Edwards hypoth-
esis and the resulting local field distribution.

Appendix A: Flat average over metastable
states

Performing a flat or biased average over all metastable
states, the local field distribution, say at site o is

P (k) = Z−1Trσo

∏

i( �=o)

Trσi δ(k − ko)eβko/2

×
∏

i( �=o)

Θ(ki)eβki/2
J

Θ(k) (48)

with ko and ki given in (3). The metastable states are
weighted with a Boltzmann factor e−βE where E =
− 1

2

∑
i ki. The effective temperature 1/β is assumed to

characterize the tapping procedure. It might as well be
viewed as Lagrange multiplier selecting the total energy
of the metastable states under consideration.

The local field at a site i �= 0 is writen as ki =k′
i + κi

with κi =σoJoiσi. k′
i is the local field of the system without

the spin σo. For the SK-model in the limit N → ∞
∏

i( �=o)

Θ(k′
i + κi)

J

≈
∏

i( �=o)

∫ ∞

−κi

dki P (ki)

≈
∏

i( �=o)

{
1 + Θ(−κi)

(
κiP (0+) − 1

2
κ2

i P
′(0+)

)}
. (49)

Using the Fourier representation of the δ-function and per-
forming the average over κi =± 1√

N

P (k) = Z−1

∫ i∞

−i∞

dk̂

2π
e(k̂+β/2)k

×
{

1 +
1

2N

(
k̂2 − k̂P (0+) − 1

2
P ′(0+)

)}N

Θ(k)

=

√
2
π

e−
1
2 [k− 1

2{P (0+)+β}]2

1 + erf( 1
2
√

2
{P (0+) + β}) Θ(k)

=

√
2
π

e−
1
2 (k−κ)2

1 + erf( 1√
2
κ)

Θ(k) (50)

with κ= 1
2{P (0+) + β}. The energy ε per site is

ε = −1
2

∫
dk k P (k) = −1

2

(
P (0+) + κ

)
. (51)

Appendix B: Equation of motion for the two
point function and drift velocity

Let Rij
σσ′(k, k′) be the contribution of sites i and j to (14).

Flipping σi → −σi yields

∆iR
ij
σσ′ (k, k′) = −r(−k)Rij

−σσ′ (−k, k′) − r(k)Rij
σσ′ (k, k′)

−2r(−k)P−σ(−k)∂k′Pσ′(k′). (52)

The first two terms are due to −ki → ki. The last term
has its origin in kj → kj − 2σiJijσj . Actually this term

contains
〈
δ−σ,σiδ(k + ki)δσ′,σj δ(k′ − kj)

〉J′

with Jij = 0.
This expression factorizes, however, for the SK-model. A
corresponding contribution arises from flipping spin σj .

Flipping a spin on site l �= i, j yields diffusion terms
and drift terms in analogy to (15). The latter actually
involve three point functions. In [14] a closure has been
proposed on the basis of a generalized Kirkwood superpo-
sition approximation. A slight simplification yields

∑

l

∆lR
ij
σσ′ (k, k′) ≈ −

{
∂k

(
vσ(k) − D(t)∂k

)

+[k → k′]
}

Rij
σσ′(k, k′). (53)

Collecting the above contributions

∂tRσσ′(k, k′) ≈ −r(−k)R−σσ′ (−k, k′) − r(k)Rσσ′ (k, k′)

−∂k

(
vσ(k) − D∂k

)
Rσσ′(k, k′)

−2r(−k)P−σ(−k)∂k′Pσ′ (k′)

+
[
σ → σ′, k → k′

]
. (54)

This yields the equation of motion for the drift veloc-
ity (16). There are different types of contributions. The
first two lines of (54) result in corresponding expressions
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for vσ(k)Pσ(k). The contribution of the third line is easily
taken into account, because it factorizes. The terms anal-
ogous to the first two lines acting on σ′ and k′ can not
be expressed in terms of P and v only. Taking into ac-
count the identities (15) and (18) they are approximated
by adding contributions ∼ vσ(k)Pσ(k) and ∼ kPσ(k). The
resulting equation of motion for vσ(k) is

∂tvσ(k) = −r(−k)
(
vσ(k) + v−σ(−k) + 4

〈〈
r′
〉〉)P−σ(−k)

Pσ(k)

−
(
vσ(k) − D∂k − 2D

[
∂k ln(Pσ(k))

])
∂kvσ(k)

+4 〈rr̄〉
[
∂k ln(Pσ(k))

]
+ Avσ(k) + B k. (55)

For k → ∞ the local field distribution is expected to follow
Pσ(k 
 1) ∼ e−

1
2k2

. This is the case if (21) holds not
only for the initial state, but for all time in the limit k or
k′ → ∞. The coefficients A and B are then determined
such that this asymptotic behavior and the sum rule (19)
is fulfilled.
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22. D.S. Dean, A. Lefèvre, Phys. Rev. Lett. 90, 198301 (2003)
23. H.-J. Sommers, W. Dupont, J. Phys. C 17, 5785 (1984)
24. R. Oppermann, D. Sherrington, Phys. Rev. Lett.

95, 197203 (2005); R. Oppermann, M.J. Schmidt, D.
Sherrington, Phys. Rev. Lett. 98, 127201 (2007)

25. S. Pankov, Phys. Rev. Lett. 96, 197204 (2006)
26. J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935)
27. G. Parisi, Fractals (Supplementary Issue) 11, 161 (2003)

or e-print arXiv:cond-mat/9501045 (1995).
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